

# Performance Contracts for Software Network Functions



Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Katerina Argyraki, George Candea

## Context

- HW networking: Consistent performance but no programmability
- SW networking: Flexible but unexpected performance behaviour

## Goal

Comprehensive understanding of entire performance profile of NF



## Performance Contracts - Workflow

- 1. Generate contracts from NF code
- 2. Users parameterize arbitrary input workloads
- 3. Contracts predict perf for workload w/o running NF
- 4. Performance predicted as function of **Performance**Critical Variables (PCVs)

# **Generating Performance Contracts - A Recursive Process**



#### 1. Base Case: Stateful Data structures

- i. PCV abstraction avoids path explosion
- ii. Distill key factors that impact performance

#### 2. Contracts for NFs

- i. Exhaustively Symbex stateless code; tally cost
- ii. Plug-in contracts for stateful functions

#### 3. Contracts for NF chains

- i. Pair packet classes from connected NFs
- ii. Packet sent (1<sup>st</sup> NF) == Packet received (2<sup>nd</sup> NF)

## Evaluation

4 NFs: NAT, Maglev-like LB, Bridge, LPM Router Metrics: Instruction Count, Memory Accesses, Latency

#### Prediction Accuracy for Instr Count (IC), Mem Accesses (MA)



Max prediction gap - 7.5% (IC) and 7.6% (MA)

### **Use Case Scenarios**

Better tools for Network Operators and NF Developers!

#### **Network Operators:**

- 1. Visualize NF performance under attack
- 2. Visualize performance of NF chain configuration

#### **NF Developers:**

- 1. Debug workload-specific perf bottlenecks
- 2. Pick appropriate DS for expected workload